@ https: //ntrs nasa.gov/search.jsp?R=19700002504 2018-07-24T23:54:34+00:00Z

/é/ - ”//f@’f

thce of Navai Research
Bontract Hﬁﬁmé 67 A=0298 9005 NR 312- 612

NATIONAI. AERONAUTICS AND SPACE ADMINISTRATIDN
Grant NGR 22 007-068

NEW NECESSARY CONDITIONS 0F OPTIMALITY FOR CUNTROI.
- »PROBLEM_S WITH STA‘TE VARIABLE INEQUALITY GGNSTRAINTS

© D.H. Jacobson, M.M.Lele, and J.L.Speyer
Rugust 1969

‘Technical Report No. 597

: This’ document has been approved for public release’
“wland sale; its distribution.is unlimited. ‘Reproduction in
whole or in part.is permitted by the U. S. Government.

 Division of Engineering and Applied Physics
- Barvard. University - Cambridge, Massachusetts




Office of Naval Research
Contract N00014-67-A-0298-0006

NR=372-012

National Aeronautics and Space Administration

Grant NGR 22-007-068

NEW NECESSARY CONDITIONS OF OPTIMALITY FOR CONTROL

PROBLEMS WITH STATE-VARIABLE INEQUALITY CONSTRAINTS

By

D. H. Jacobson, M. M. Lele, and J. L. Speyer

Technical Report No. 597

This document has been approved for public release
and sale; its distribution is unlimited. Reproduction in
whole or in part is permitted by the U. S. Government.

August 1969

The research reported in this document was made possible through
support extended the Division of Engineering and Applied Physics,
Harvard University by the U. S. Army Research Office, the U. S.
Air Force Office of Scientific Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A~0298-0006, 0005, and 0008 andbythe National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts
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ABSTRACT

Necessary conditions of optimality for state-variable inequality con-
strained problems are derived by examining the limiting behavior of the
Kelley penalty function technique. The conditions so obtained differ from
those presently known, with regard to the behavior of the adjoint variables
at junctions of interior and boundary arcs. A second, rigorous, derivation
is given; this confirms the necessary conditions obtained by the limiting argu-
ment. These conditions are related to those known earlier; in particular,
it is shown that the earlier conditions over-specify the behavior of the adjoint
variables at the junctions. An example is used to demonstrate that the earlier
conditions may yield non-stationary trajectories.

For the regular case, it is shown that, under certain conditions, only
boundary points, as opposed to boundary arcs, are possible. An analytic

example illustrates this behavior.

" Senior Analyst, Analytical Mechanics Associates Inc.; this work supported
by NASA Contract NAS 12-656.




1. Introduction

Necessary conditions for the optimality of state-variable inequality con-
strained problems have been the subject of much research in the past ten
years. Gamkrelidze [1], in 1960, approached the problem via the Pontryagin
maximum principle. He adjoined the first time=-derivative of the constraint --
which explicitly contained the control by his 'regularity' assumption -- to the
cost functional and treated the resulting problem as one with a control con-
straint. Berkovitz [2], in 1962, derived the same conditions as in [1], by way
of the classical calculus of variations. He too used the first time=-derivative
of the constraint, which, by his constraint qualifications, contained the control.

Bryson, Denham and Dreyfus [3], extended the above procedure to cases
where the state-variable constraint was of order p &= l.+ To ensure feasibility
of the resulting trajectory, they adjoined a point equality constraint, consisting
of the state constraint and its (p - 1) time-derivatives, at the tirné of entry
of the trajectory onto the constraint boundary. Their results reduce to those
of Gamkrelidze and Berkovitz for the case of a first order constraint.

Chang [4], in 1962, used an entirely different approach. He adjoined
the constraint violation to the cost functional by a penalty parameter and used
a limiting procedure to obtain the necessary conditions directly. His proofs
were limited to the first order case (p = 1). Dreyfus, in his book [5], clarified
this direct procedure of adjoining the state-variable constraint per se, and
obtained the same necessary conditions. Speyer [6] pointed out that Dreyfus'
arguments failed for constraints of order p > 1, as then the adjoining multi-
plier may exhibit impulsive behavior. Dreyfus suggested the resolution of

this matter as a research problem.

+ The constraint is assumed to be of p-th order, i.e. the p-th time-derivative
of the constraint is the first to contain the control variable explicitly.
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Speyer [7] extended the direct approach to constraints of higher order,
by adjoining directly the state-variable constraint to the cost functional,
together wifh point equality constraints at junctions of boundary and interior
arcs. He obtained a set of necessary conditions which differed from, but
were related to, those obtained in [3]. McIntyre and Paiewonsky [8] used a
similar approach.

A third set of necessary conditions, differing considerably in form
from those in [3] and [7] were obtained by Dreyfus in his Ph.D. thesis [9]. He
used the constraint and its p -1 time-derivatives to reduce, by p, the
dimension of the state space along the constraint boundary. These results
were related to those of [2] by Berkovitz and Dreyfus [10], for the case p = 1.
Speyer has shown that these are related to the necessary conditions derived
in [7].

Concurrently with these theoretical investigations, research was
progressing on numerical methods for the solution of state variable inequality
constrained problems. Denham and Bryson [11] used the results of [3] for
a steepest ascent algorithm. Speyer [7] proposed a second order sweep al-
gorithm. In 1962, Kelley [12] contributed by extending a device of Courant
[13] to obtain a penalty function technique for the numerical solution of such
problems. Other penalty procedures have been investigated by Lasdon,
Waren and Rice [14], and Thrasher [26]. Kelley's procedure adjoins the
square of the constraint violation to the cost by means of a penalty parameter;
the resulting unconstrained problem is solved repeatedly for successively in-
creasing penalty parameter values. The convergence of this type of procedure
has been discussed by Butler and Martin [15], Russell [16], Lele and Jacobson
[17], Cullum [18], and Beltrami [19]. Beltrami derived the generalized
Kuhn-Tucker optimality conditions in a Hilbert space by investigating further

the limiting behavior of the penalty method.
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In this paper; following Chang and Beltrami we derive necessary condi-
tions of optimality from the limiting form of the Kelley penalty function
technique. This yields necessary conditions of optimality which are similar
to those of Speyer [7], except at the junction points of boundary and interior
arcs. At these points the influence functions exhibit fewer discontinuities
than predicted in [7]. (The same result can be obtained from the Lasdon,
Waren and Rice procedure [14].) This is confirmed, under weaker assump-
tions, with the aid of the generalized Kuhn-Tucker conditions. We show the
relationship of our results to those of [3] and [7]. In particular, we demon-
strate that Speyer's necessary conditions are identical to ours provided that
all, except possibly one, of the multipliers adjoining the point constraint at
the junction are zero. This leads us to the conclusion that, in addition to

Speyer's stated conditions, it is necessary that all his entry and exit point

adjoining multipliers be zero except, possibly, the first.

The necessary conditions of [3] can be derived directly, by integration

by parts, from ours; this derivation indicates that it is necessary that certain

relationships hold between the entry (or exit) point multipliers.

Note that for the case where p = 1, and for p = 2 if the Hamiltonian is
regular, our reéults are equivalent to the above [7] known necessary conditions,
since there is then only one adjoining multiplier at eatry and exit points. We
use a fourth order constrained problem to illustrate that the existing necessary
conditions of Bryson, Denham, and Dreyfus and Speyer, can be satisfied by a

non-extremal (i.e. non-stationary trajectory) and thus can yield an incorrect

answer. In the particular example considered, a trajectory consisting of
boundary and interior arcs is pieced together; this satisfies the existing

necessary conditions [3] and [7]. However, it turns out that the unconstrained

optimal trajectory is at all times feasible and vields a lower value of the cost.
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The problem was deliberately chosen to be convex so that no stationary but
non-optimal solutions exist. This confirms that the necessary conditions of

Bryson, Denham and Dreyfus and Speyer can be satisfied by a non-extremal.

In our necessary conditions the influence functions may exhibit discon=
tinuities at junction points of boundary and interior arcs only along the direction
SX.+ For problems where the Hamiltonian is regular, yielding a continuous
optimal control function of time [8], we are able to derive a particularly °
simple expression for the magnitude of this discontinuity. The form of this

expression leads us to conclude that, in certain cases, problems with state

constraints of odd order (where p > 1) will not exhibit any boundary arcs over

non-zero intervals of time; i.e. the trajectory will, at most, only touch the

constraint boundary but will not lie along it. This Vbehavior is illustrated by
a third order example which is solved analytically. As predicted by the theory,
the constrained trajectories do not remain on the boundary for non-zero inter-
vals of time.

In summary, we have, by directly adjoining the state variable con-
straint to the cost functional, obtained necessary conditions of optimality
that are considerably simpler and 'sharper' (in that non-extremals cannot sa-
tisfy them) than those of[3]-[11]. Furthermore, we are able to prove that
under certain conditions, problems with constraints of odd order (p > 1) cannot

contain boundary arcs of non-zero length.

2. Preliminaries

We first state the basic problem to be considered and establish some

notation.

+ S(x(t)) < 0, ¢ €[0, T] is the state-variable inequality constraint. SX = —(x(t)).
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The following problem will be referred to as 'the basic problem!' or
'problem (I)’'.
Problem (I)

Minimize &(x(T)) (1)
u

subject to

x(t) = £(x(t),ult)) ; x(0) = x_ (2)

and the scalar state~variable inequality constraint

S(x(t)) S 0 R t e [0, T] . (3)
Here,
u(t) =- scalar control variable
%(t) == n-dimensional vector of state-variables
f -- n-dimensional vector function
S -- p-th order state-variable constraint
] -- gcalar function of terminal value of state-variable
X, T initial value of state vector, assumed known
- £0)
(p) =" _d_l'i_( )
at?

” . ” == norm over the space under consideration
3 =~ such that

€ ~= belonging to

¥V -~ for all

3 -- there exists

Assumptions

l. wel[0,T]=U

2. xeCl][0,T] =X
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3. fis a continuous function of x and u and has bounded partial derivatives
up to p~th order in both x and u on the interval [0, T].

4. & is a continuous and differentiable function of x(T).

5. Se¢ CP[O’ T].

6. The basic problem has a feasible solution with finite cost Vo

Notes

1. The basic problem is of the form of Mayer. However there is no loss

of generality, for a problem in the form of Lagrange or Bolza can always

be cast into the form of Mayer by defining an additional state-variable.

2. uand S are assumed to be scalars for simplicity, without loss of generality.

3. £, S, and ® are assumed to be implicit functions of time, without any loss

of generality.

3. Summary of previous results

We shall summarize only the results of [3] and [7], as these are the

closest in form to ours.

3.1. Necessary conditions of Bryson, Denham and Drevyfus

In [3] Bryson, Denham and Dreyfus extended the approach of [1] and
[2] to problems with state constraints of orders higher than the ﬁrst.+ They
differentiated
S(x(t))
p times with respect to timme to obtain the mixed control-state inequality

constraint

P
(8)(x(t), u(t))-= 0 : (4)

They then transformed problem (I) into a control-constrained problem by
applying the constraint (4) along boundary arcs. To ensure feasibility of

the resulting trajectories they also imposed the following equality constraint

4 See also [27].
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at points of entry—l‘ of the trajectory onto the constraint boundary

=t
t entry

Thus the single state constraint (3) was replaced by the point constraint (5)
at entry points and the control inequality constraint (4) along the boundary
(S = 0). The equivalent problem was

Minimize ®(x(T)) (6)
u

subject to

and

I

w(t )y =0

entry

P
(S)(x(t),ult)) S 0 | telt

]

Adjoining (4) and (5) to (6) by a scalar multiplier function y(*) (# 0) and

entry’ texit

vectors of multipliers, vb(ti) (0)i=1,...,N -~ corresponding to the N
entry points -- they obtained the following necessary conditions
P
oH _ . _ ¢ T
5= 0= y(S), + 1 ) (7)

and the adjoint equations

R =
Ix 9%
D M) = 22 (8)
= £°N + y(S)
< x (=T

where the Hamiltonian H was defined as

P
H=y(S) + \Tf . (9)

-{- This equality constraint could equally well be imposed at the points of exit
from the boundary.
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Due to the point constraints (5), the influence functions N(: ) suffer

discontinuities of the form:

MDY = Mt - vg(ti) (—g-‘f)t (10)

., N), the entry points.

3 e

att=t (i=1
1

3.2. Spever's necessary conditions

Speyer [7] adjoins the state-variable constraint directly to the cost
functional with a multiplier function p(:) (# 0). To ensure feasibility, he
also adjoins the point constraint (5) both at entry and exit points of boundary

arcs with multipliers vg (’ci) (# 0). He obtains the following set of necessary

conditions:
—g%: 0=fin (11)
and
=88
ox MT) = 22 (12)
= fT)\ + pS o
X X T

where the Hamiltonian H is
Ho=pS+Af | (13)

At junction points of interior and boundary arcs, the adjoint variables suffer

discontinuities; the boundary conditions are

NED) = () - @(tﬁ(%‘f) (14)
t.
i=1 M.

Speyer notes that, in going from an interior arc to a boundary arc,
the jumps in M(*) can be obtained as functions of A(:) and x(: ) immediately
prior to the junction. Thus there are no more unknowns in his procedure

than in the previous scheme [3].
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4. Derivation of necessary conditions via the Kelley penalty function technique

The Kelley penalty function technique [12] converts the basic constrained

problem (I} into the following unconstrained problem.

T
Minimize P(r,) = &(x(T)) + é—rlzly h(S)S% dt (15)
u 0
subject to
k(t) = f(x(t), u(t)) ; x(0) = X (16)
where
1 a>0
hia) = : (17)
0 a S0
and e > 0.

This problem is then solved repeatedly for an infinite sequence {rk}

such that r; > 1y ) > 0 and limit) _ v, =0. Lele and Jacobson [16] have

shown that, under certain conditions, the above procedure converges. We
state their main theorem below, with a slight modification.
Theorem 1. Let {rk} be an infinite sequence of positive numbers

ot ) e
3 rk rk+l 0 and hmltk——a»oork 0. Under certain conditions®, the

P-function is minimized by a bounded control function U (not necessarily
unique); further, every limit point of the sequence of control functions {uk}

solves the problem (Ii).

Here u, denotes the optimal control for the k-th problem, i.e. the

k

unconstrained problem corresponding to the k-th member of the sequence
{rk}c Let us now examine the necessary conditions of optimality for this,

unconstrained, problem. Defining the Hamiltonian Hk as

-1

B O (18)

H

+ See [17] p. 165.
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the necessary conditions of optimality are

oH
kK T
£ =0=1) (19)
and
S oH
T oax
\T) = 22 . (20)
= % + v n(s)s. s o
—fx +rk (S)S. < T

If we denote the term rl-;lh(S)S by (20) may be re-written as

s _ T

A= fXK + nksx . (21)
We can now derive the necessary conditions of optimality for problem (I) by
considering the equations (18), (19) and (21) in the limit as rk—% O+. For
this purpose consider only the limit

limit, . (-) = n(+) (22)

Beltrami [19] has shown that, under certain additional restrictions on &, S
and U, the above limit exists and is bounded. His proof is stated for the

case when S maps X to E1 It can be readily extended to the present case,

with the essential change that

. = 2
hmltk___>OO nk(t) n(t) < constant a.e. (23)

This gives the following necessary conditions of optimality

BH _ - Ty (24)
ou u
and
i - o2
ox 5%
T MT) = < (25)
X X T

+ Chang [4] uses a similar approach. An alternative, rigorous derivation is
given in Section 5.
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where n(-) ® 0 and we have defined H as

H = limit H, = limit + )\Tf) . (26)

k-0 Tk k—oo (nks

From (23), it follows that the function n(-) may contain impulses of
positive weight. This would lead to discontinuities in the influence functions

of the form -

+ 0S
1

[ty

At o

) = Mty) - v (27)

t

where t; € [0, T] is the time at which the impulse occurs and v & 0 is a scalar.

Equations (24)-(27) form the necessary conditions for problem (I). As
can be seen, (27) is considerably different from either (10) or (14), which
give the existing form of the discontinuities. In the next section, we derive
the above necessary conditions directly and rigorously, and we show that
the discontinuities in the influence functions occur at the junctions between

boundary and interior arcs.

5. A direct derivation of the necessary conditions

We present below an alternative derivation of the necessary conditions
of optimality, (24)-(27). Basically we rederive the generalized Kuhn-Tucker
conditions [20] in a Banach space. Russell [21] has previously del“ived these
conditions in a general topological space and applied them to a state con-
strained problem. Luenberger [22] has obtained similar results. However,
these researchers have not related their work to that of [3], [7].

Our proof, in Section 5.1, follows closely that in [22], with the essential
difference of no qualification on the constraint. This admits the possibility
of an unbounded multiplier. After translating the necessary conditions to
state space in Section 5.2, in Section 5.3 we prove the boundedness of the
multiplier under a different qualification, more natural from the control-

theoretic point of view.
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5.1. A generalized Kuhn-Tucker Theorem

For the purposes of this section we write the basic problem in the

form

Minimize &(u) (28)
u

subject to

S(u) S 0
(1I)
uelU

Here 0 denotes the null vector in Cp[O, T]. We will now consider necessary

conditions of optimality for this problem.

All differentials and derivatives will be in the sense df Fréchet. The

symbol <x, T) will denote the value of the linear functional T(x) at a point

x € X. (cf[23]p. 21.)

Theorem 2. Let & be a real valued Fréchet differentiable function on U,
and S :U—%CP[O, T] a Fréchet differentiable mapping. Suppose u* € U mini-
mizes ® subject to S(u*) S 8. Then there exists r = 0, n* € LOO[O, T],
n* # 8, such that the Lagrangian

ro@(u) + <S(u), n*) (29)
is stationary at u*. Further

(S(u*), ¥y =0 . (30)
Proof. Define the following sets, A and B, on W = R % CP[O’ T].

A={r,z|r 2 0&(u*;0u),z = S(u*) + OS(u*; Ou)

for some Ou € U} (31)

and

N

B={r,z|r<s 0,z 08} . (32)
The sets A and B are convex; B contains interior points as Cp[O, T]

has positive cone.
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Denote by Int(B) the interior of B. Then

AN Int(B) = ¢ (33)
the empty set. For, if (r,z) e A> r <0, z <0, then 30ueUs

O0(uwx; Ou) < 0 , S(u*) + dS(u*;0u) < 8 . (34)
Then Ja sphere of radius P centered on S(u*) + 0S(u*; Ou) & N (the negative
cone in Cp[O, T]). For 0 <a <1 the point a[S(u*) + 0S(u*; du)] is the center
of an open sphere of radius a-P contained in N; hence so is the point
(I = a)S(u*) + a[S(u*) + 0S(u*; Ou)] = S(u*) + a- 0S(u*; Ou). As for fixed du

IStw* + abu) - S(u*) - a- 6S(u*; 6u) || = ofa) (35)
it follows that for sufficiently small a, S(u* + afu) < 8. A similar argument
shows that &(u* + adu) < ®&(uw*) for sufficiently small a. This contradicts the
optimality of u*. Therefore

ANInt(B) =4
So A and B are two convex sets in the normed space R X Cp[O, T] such that

AN Int(B) = 4 and Int(B) # §. Therefore 3 a closed hyperplane seperating

7%, O such that

b

A and B, [24]. Hence 3 T

roerf <z, nt) Z 0 V (r,z) € A (36)
and

roort (z,7) SO V¥V (r,z)eB : (37)
As (0,8) e AN B, 0= 0; and from the nature of B it follows that ro = 0,
7% # 8. From the seperation property

r - 08(wk; Ou) + (S(u¥) + O0S(u*; Ou), ) = 0 (38)
V Ou ¢ U.

From the above inequality, Ou = 0 @(S(u*), n*) Z 0; but S(u*) S 8

and n* Z @ =>(S(u*), n*) S 0, hence

<S(u*)9 77*> =0 . (39)
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It then follows that V 0u ¢ U

roﬁé(u*; Ou) + <5S(u*; Ou); n*) =0 (40)

3 —
r @ tm Su* S (41)
where ® Su* denote the Fréchet derivatives of ® and S evaluated at uw*.
We will now translate these results into the more familiar state space
form.

5.2. The stationarity conditions in state space

In state space, the equivalent of the Lagrangian of (29) is the adjoined

cost functional
T

J =1 _3(x(T)) + yo dt[n*(t)S(X_(t)) + M) (E(x(t), ult)) - x(t))] . (42)

Then following the usual procedure [27] we consider variations in J
for arbitrary variations Ox, Ou. This gives the following conditions for

stationarity of J:

5 _8H
Ix 5%
MT)=r == (43)
T ) 0 9Ox
= fx)\. + n“SX T
and
o ., _ [T
ou - 0= 12 (44)
where the Hamiltonian H is
H = 7S + N 1f (45)

and from (30)

mE(t) = (46)

From Section 5.1, these are the necessary conditions that a control u* and

its associated trajectory x* satisfy if they solve (I).
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5.3. Boundedness of the adjoining multiplier

0
duf(t)

p
Theorem 3. If [(S)(sc*(t), wk(t))] # 0 V t € [0, T] then T £ 0.

Proof. For clarity, and without any loss of generality we will assume that
the optimal trajectory x* has only one boundary arc and two interior arcs.
Suppose ro = 0. Then MT) = 0 (from (43)); hence
AME)=0 ot e(teX,T] (47)

where t__ = time of exit {rom boundary arc. From (44), Vt € [0, T]

Hu =0 (48)
hence
(Hu) =0
' (49)
p-1
(Hu) =0

and similarly for higher derivatives of Hu' In particular, att = tex

- +
(H) = (H)
CoL
{ (H) = (H) (50)
p-l_ p-1 .
(H) = (H)

\

where the - and + superscripts denote instants just prior to, and just after

to, respectively. From (43), we have that

- ex
Mte Y =Mt )+ 5;+ n*(t)SX(x(t))dt (51)

which substituted into
p-1_ p-1,
() = (1)

yields, after some manipulation (since N(t) = 0; te (tex’ T])

‘ex P
S;+ *(S)_ dt = 0 : (52)

ex
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P -
As, by assumption (S)u £ 0, n*(tex) < co. This gives Mtex) = 0. Now, from

H)=0 (53)

along S = 0 we have

p-1
[terms involving (fu) etc|A(t)

e (t) = (54)

(S),
This gives a linear homogeneous differential equation for M- ) along S = 0,
with the initial condition )\(t;x) = 0. Hence M) = 0 along the boundary.
Thus,
n(-)=0 a.e. (55)
as well as ro = 0. But r, = 0, 7 = 6 contradicts the faét that Ja closed
seperating hyperplane (Section 5.1). Thus r £ 0.

For convenience we set r = 1. We now show that n* is bounded every-
where except possibly at junction points of boundary and interior arcs.
Theorem 4. The multiplier n* is bounded everywhere along the boundary,
except possibly at junction points of boundary and interior arcs. At such a
junction point, it may exhibit a positive impulse of finite strength.

Proof. As in Theorem 3, we will assume, without loss of generé.lity, that

x* has only one boundary arc and two interior arcs.

From (54), n*(:) along the boundary is given by

p-1
[terms involving (fu) etc]h(t)
() = , (56)
(S)

u

Denote by tl’ the time of a junction between the boundary arc and an interior
arc; superscripts - and + denote times prior to and after the junction, respec-

tively. Then from (43)

MET) = (e]) - St“ S dt (57)
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(Mtl) is assumed bounded‘i—)n

This coupled with (55), (43) and

p-l _ p-1 +
(H) = (H) (58)
leads to the conclusion that
+
tl P
5@ Tfk(s)u dt unbounded = n*() unbounded. (59)
t

everywhere, which contradicts the fact that Ja closed hyperplane in Theorem 2.

Hence

1 p
i< <
S;" 7] (S)u dt < o

and thus Mti) is bounded and hence A(t) is bounded along S = 0, so that
7(-) < o (60)
with the possible exception of junction points, where it may exhibit positive
impulses (n* & 0) of finite strength.
This last possibility is conveniently summarized by adding the following
junction condition to the necessary conditions (43), (44):

NE)) = D) - uitg) _ag) (61)
: t

ox
1

where t is the time of the junction.

5.4. The necessary conditions summarized

We summarize below the necessary conditions derived in this section.

Theorem 5. The necessary conditions for optimality of problem (I) are

BH _ - Ty (62)
ou u

+ A reasonable assumption.
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-4 = 9H
ox 82 ’
. MT) =<3 (63)
= ;fxx + ﬁSX T
where
= S(x(t)) = 0
nit) = (64)
0 S{x(t)) <0

is a bounded function for t € [0, T].
At junction points t; of boundary and interior arcs, the influence

functions A(-) may be discontinuous. The boundary conditions are

MES) = MED) - owlt)

89S
=, e

v(t,) Z 0. The Hamiltonian H, used above, is defined by
H=5Hs+ Nt . (66)

5.5. Generalization

For the case where S ¢ C;[O, T], the necessary conditions are the
same as those above, but B{*) and v are r-vectors. If terminal equality
constraints (W(x(tf), tf) = 0) are present, then the necessary conditions take
the following form:
Theorem 6. (Equality Terminal Constraints) If in addition to the assumptions
of Section 5, the following are true

i) Ox = fx(x*(t),u*(t))éx + fu(x*(t), w¥(t))0u
is completely controllable

ii) l//X(x*(tf)g tf) has rank q (¥ is a q-vector function)

then necessary conditions of optimality are:

oH . _ T
8u_o~fu>\ (67)
W) = R : _ 8%, Ty,

K‘ax“fx)””sx ; x(T)_8X+<r v,l/;x (68)
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o is a g-vector of constant Lagrange multipliers and

nit) = . (69)
0 S(x(t)) < 0

At junction points of boundary and interior arcs:

+ R 05
MED) = MED - ()| 3

2 i=1,...,N

t (70)

1

>
v(ti) 0

Proof. We only sketch the proof here. The above problem may be considered

in the following nonlinear programming formulation

Min &(u)
u

subject to
S(u) S0
Y (u) =0
Assumptions i), ii) above imply that Y is regular at u*.
Define the set
U1 = {uzwu(u”‘)éu =0, utt+ Oue U} . (71)
The set A (Theorem 2) is now defined as

A = {(r,2z):r & Of(u*x;Ou), z = S(u¥) + 0S(u*; Ou); for some Ou € Ul}
(72)

Using similar though more involved arguments than those of Theorem 2

it follows, since ¥ is regular at u¥, that

(rofﬁu + n’-<Su, 511) =0 Ou € U1 . (73)
This leads to the conclusion
Sk ,,T -
rO@u+nsu+cr :,bu_o . , (74)
Translating back into state space and using the assumption —51-3.8(—{) (S) £ 0;

t € [0, T] yields the necessary conditions (67)-(70).
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6. Relation to previous results

6.1. Bryson, Denham and Dreyfus

Let us rewrite (42) as the following (noting that r, = 1)

T
Minimize J = &(x(T)) + § dr n(7)S(x(T)) (75)
u 0
subject to
*(t) = £(x(t), u(t)) ; x(0) = x (76)

where we have written n for n*. For simplicity, and with no loss of generality,
we will assume that the optimal trajectory has only one constrained arc.
Then integrating the cost functional by parts, equation (75) becomes (dropping

the Min operator for simplicity),

u
t=t T d
@lx(r), T) + [ny (SGrn] | = ar oy (r) & [s0xtr) (77)
0
t:ten
where
t
ny(t) = n(T)dr (78)
CERY
Adding and subtracting nl(tex)s(ten)’ (77) becomes+
T
@(X(T)’ T) + V]_S(X) l + S‘O 77_1 (7) % (S(X(T))) (79)
t=t
en

where

V1 = nl( ex) ) 77l(ten) =0 (80)
and

my(t) = e, ) = ny(t) = 0 Vielt ,t ] : (81)

T ex
+ Note that g n(T)S(x(r))dr = § dr nS
0 t
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We can carry on this process of integration by parts until finally we obtain

_ T _ . .dP |
5= o), T 4 v e r ()L (it lar (82)
o P d7p
where
T o ae p-1
v =(5,5,8,..., (S)) (83)
and
T = [vl, Voy ooy vp] (84)
and
vl = nl( ex) B nl(ten) z O (85)
and
() = ot ) = ny(t) (86)
and where
t
0, (t) = S‘o 7, .p(T)dT (86)
and
n,(t) = n(t_ ) - n(t) = 0 : (88)

Identifying np(' ) with y(-) we see that (82) is equivalent to the adjoined
cost functional of [3]. If we now use (82) as the functional to be minimized
subject to equation (76) we obtain the same stationarity conditions as those
given by equations (8)-(10). The noteworthy point is the set of equations
(85)-(88). These indicate that the v's and y(t) of [3] are related along the
optimal trajectory.

6.2. Relation to Speyer's necessary conditions

Speyer's [7] necessary conditions reduce to those given by us, if his

multipliers Vg through vg are zero. For, if that is the case, (14) and (65)

2 p
are the same, and setting p(*) equal to 7)(-) completes the connection.
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The fact that, along an extremal Speyer's multipliers Vg through Vg
are zero leads to an interesting result provided the Hamiltonian (66) has a
unique minimum in u(-) for allt € [0, T], i.e. if the Hamiltonian is regular.
In this case, Speyer [7] and McIntyre and Paiewonsky [8] have shown that
u(- ) must be continuous across the junction, and that vg = O.-ZBut if Vg -1,
are all zero, then u and all its derivatives ug to Izu.) must bep

v v
S,-2" 'S,

continuous across the junction. This result is easily obtained from [7] or

equations (14) and (50).

7. A further consequence of the new necessary conditions

For the regular case, where, from the preceding discussion, u and
its (p - 2) time derivatives are continuous we have:
Theorem 7. If the Hamiltonian H is regular, S e sz_l[O, T]+ and the extre-

mal path has a boundary arc of non-zero length, then

- p-’l_ p_1+ 2
SEL W) - @)
v(tl)k: ("1) Zp"l = 0 (89)

where ()_ denotes () on the interior arc at the junction time t-

Proof. We use (65) and

p-1_ p-l .
(H,) = (H) (90)

which holds across a junction; noting that

p-1 . dp-~l
u dtp—l

’m‘
W

T
(£, ™)

p-1
fgu)\, (u) + terms of lower order time derivatives of u

1l

+ terms in £ £ etc.
u x

-i- sz_l = space of all functions whose (2p-1)th derivatives exist and are
bounded.
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we have the following expression for v<t1) (after simplifying it with the aid

p-1
of (65) and the above expression for (Hu) ):
.p-1_ p-l
DPE N T 7 - )
vit)) = S : (91)
+
(s)F

As S ¢ sz_l[O, T] by assumption, we have, from the general expression

Zp—l p p-1 .
(8) = (S)u (u) + lower order time derivatives of u + terms in f, (f) etc.

the relation

[
- 2p-1 ' (92)

This expression for v(tl) is very significant. Note that H_ > 0 (strengthened

- - uu
pl plio

necessary condition for a minimum), [(u) - (u) | # 0 and as S and its time
2p-2
derivatives up to (S) are continuous (therefore zero)
2p-1
(S) >0

for the trajectory to reach the boundary. This implies that
v(tl) S0 (93)

for p odd. But v(tl) Z 0 and hence (93) implies that for odd order constraints
p-l_ p-1
the trajectory will, at most, only touch the boundary, if (u) £ (u) +. Note

that forp=1, u = u+, so that, from (91) v(tl) = 0; thus for the first order

case boundary arcs are permitted.

2p-1
(9)*

+

= 0 as S and all its time derivatives are zero along boundary.
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This behavior and (92) are reminiscent of junction conditions in
singular control problems. This provides a further hint of a close connec-
tion between state-constrained and singular control problems which has

been suggested elsewhere [25].

8. A third order problem

"Third and fourth order state constrained problems are illu=strated.
The third order problem confirms the result of Section 7, as all optimal
trajectories do not stay on the constraint boundary for any nonzero length of
time.

Consider the following problem:

1

2
Minimize g S-dt (94)
u 0

subject to

Xy =%, XI(O) = O=x1(l)

5{2 =X, XZ(O) =1= -xz(l) (95)

%3 =1 x3(0) =2 = x3(l)
and the constraint

x(t) = 2 S0 t € [0, 1] (96)
where £ ranges as

32420 . (97)

The solution to the unconstrained problem is obtained first. The

Hamailtonian H is

2

_u_ ,
H =5+ Nx, + Ayx, +\u . (98)

The adjoint equations are

5\1 =0 )\1(1) = constant
)\Z = =}\l )\Z(l) = constant (99)
)\3 = -)\2 )\3(1) = constant
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Minimizing the Hamiltonian gives the optimal control

H =0=u+k=u=-\, (100)
The solution to the problem is:
Optimal control is u®
1
u0=48(t--2—) (101)
Optimal trajectory
(Xcl):Zt4 T
(x5 =8> - 12¢% + 2t + 1 (102)
0 = 24t% - 24t + 2
3
Adjoint variable histories
(L 0
xl =0
<x§ = 48 (103)
o 1
)\3 = 48(—2— t)
Note that the constraint is not effective for £ >—§— .
The solution to the constrained problem consists of two parts.
For £ in the range —4(26 <Ls —g there is only one point of contact with
the constraint boundary at t = é— The complete solution is
o at® + bt + ¢ o<t<%
u = 2 1 (104)
-la(l = t)" +Db(1 -t) +c] §<t$1
5 4 3
at bt ct 2 <., < 1
60 + 54 + A +t +t 0 t >
Xl =
a(l "“5+b(1 -314+C(l "9)3+(1 Sl r(l-y isis
60 24 6 2
(105)
4 3 2
. 1> + A + > +2t+ 1 t >
Xz =
a(l -t b -3, e -n? 1
) =S¢ s
[ > + 3 + > +2(1 = t) +1] 5 St 1

(106)
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3 2

at™ | bt~ sgsd
3 + > +ct+ 2 0 t 5
%2 = (107)
3 3 2
a(l - t)°  b(l -1t) - ls<ys
3 + > +c(l -t)+2 > t 1
and the adjoint variable history is
< <l
-2a 0 ts >
)\1 = (108)
1
2a -‘2— ) t = 1
2at + b 0sts %
)\2 = < , (109)
2a(l - t) +b -Z<t<1
\
and
~at? - bt - ¢ 0<t<%
)\3 = (110)
-a(l - t)" +b(l -t) +c -Z\t\l
where
a = 5120(¢ - 2)
o _ 39
b = -3200(% _100) (111)
- -2
c = 320(4 ZO)

When £ < _4_?6’ the single point of contact splits into two, instead of a boundary
arc as would occur for the same constraint on xz(l) [27]. The solution is a
trifle more complicated and consists of four parts: one prior to the first

1
1 (<2
t e [tl,-lz—], one fort € [%, 1 -tl] and one for t e [1 =ty 1]. The times of

point of contact with the constraint boundary at time t one for

1
contact are symmetric about t = 5

The optimal control u is:
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at? + bt +c 0St<t
dt + e t1<t<%
u = ] (112)
- - - il < -
d(l - t) -~ e > <t 1 tl
ca(l =% -b(l-t)=c  1-t <tS1
The optimal trajectory is
5 4 3
at bt ct 2 < . <
Tttt Tt 0Stst
4 3 2
at” | et® At <. <1
<Z4+6 t—5—+Bt+C tp StS >
X:
1 4 3 2
a(l - )% el -t)° Al - t)° _ Lo, <.
57 + = + 5 +B(l -t)+C > StS1-t
a(1"3)5+‘°Q'—‘5)4+C(1't)3+(1-t)2+(1—t) 1-t Sts1
\ 60 24 6 1
(113)
4 3 2
at bt ct < <
5t Sttt ] 0StsSt,
3 2
at” et <it<s L
7+ +At+B tp StS >
XA =
2 3 2
_'d(l = t) _ e(l t) _ _ - _1_ < <
- > A(l -t) - B 5StS 1-t
4 3 2
a(l = )% bl =-t)° ol -1t)°_ o r <4 <
St 2 5 21-t) -1 1-t, St<1
(114)
and
(at® | bt?
—§“+"Z=°‘+ct+2
2
g-%—+et+A
X, = (115)
> ) ag - g2
5 +e(l -t)+ A
1 - 3 - )2
LS NP -1 L) MOVY) PSS

" 3 T3
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where
dt:l3 bt? dt%
A:T+_Z—+Ctl+2__2_=etl
dt? btf ct% dt? etf
BEqgytg t tety tl-4 -5 Ay
and
atf bt% ct3 dt? etf thf
CEotzmte thtth -2z -% "~z "By
The adjoint variable histories are
-2a 0Stst
_ £+ <1 -
xl =40 t t 1 t1
2a l==t1 sts1
2at + b 0Stst
- <+ < -
N, =¢ d ) St<1-t
+2a(l -t) +b 1-t1<t<1
and
( 2
-at” -~ bt - ¢ 0sSts t)
-dt - e | tIStS%
E a(l - t) + SStS1-t
( ) € 2 1
a(l ~t)% +b(l - t) +c 1=t St <1
\
The constants a, b, ¢, d, e and t; are related to £ by the following set of
equations:
[ d+ 2e =0
at1 + btl + e - dt1 -e=0
d e , A
48+§+2+B_0
< dtf btf ct1
13 + A + 5=+ Zt1 +1=0
at? bt oct?
60 + 54 + 3 + tl + tl ={

Zatl +b=-d=0

(116)

(117)

(118)

(119)

(120)

(121)

(122)
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The equations (122) were treated as a set of linear equations ina, b, ¢, d, e
and £, and solutions found for t; in the range [09%]. The times of contact
are plotted vs £ in Fig, 1 which shows xl(-) for various values of £. Fig, 2
shows the corresponding control history. It is worth noting that, as the
Hamiltonian is regular, the control u is continuous, as also is . but 4 is

discontinuous at ty and 1 “t- For this problem, 7(*) = 0.

9. A fourth order problem

We have set up this problem to demonstrate that a nonextremal can

satisfy the necessary conditions of Bryson, Denham and Dreyfus [3] and

Speyer [7].

Consider the following fourth order problem

10
2
MinS‘ - at (123)
u 0
subject to
Xy =%, Xl(O)zole(lO)
15
Xy = Xy XZ(O) = -xZ(lO) =13
. 15 (124)
Xy = Xy x3(0) = x3(10) =13
15
Xy = X4(O)— “X4(10)—‘1_"
and the constraint
x (t) = 1 S0 t € [0,10] . (125)

The following trajectory, consisting of a boundary arc between t = 4

and t = 6 and two interior arcs satisfies all the necessary conditions given

in [7].
24 -y 0<t<4
28
uy (t) = 0 4Sts 6 (126)
12 6 -t 6<t<10
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Here p(+) =

of Speyer's

15
where a = 128 -

0

0

a4-t

The adjoint variables are

} |

15

128

15

G em———

“u

» Vg

128

=0, v
1

x,(t) =
6-=t

S,
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< 10

A
[y od

A
A
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(gt
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o~

A
t+
A

10
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3

A A

N

A\ A\ I\ N A A\ N

A

A

15 4
s. T~ 128 @@ Vg

A N

A

A\ N N N N N n
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10
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functional is 0.293. Also, Bryson, Denham and Dreyfus' necessary conditions

are satisfied with

=0 v =0 v :_:i(_)__ :—3-—0——
"bl ’ b, by 1287 "b4 128
and
v(*)=0 0StS 4, 6Sts10

However, the unconstrained optimal trajectory given below, turns
out to be feasible,+ and gives a cost of 0,2897. Other stationary trajectories
are ruled out as the problem is convex. This implies that the necessary con-
ditions of Bryson, Denham and Dreyfus and Speyer have yielded a spurious
extremal.

Unconstrained trajectory

w=bt? +ct+d (135)
_ot® e’ et 1st® 1s? s (136)
X1 7360 "120 " 24 T 96 24 12
bt?  ctt atd  15t% 15t 15
X = %0 T 22t 6 T332 "12 t12 (137)
4 3 .2
Cbtt ctd  at® 15t 15
X359Vt 2 tT16 12 (138)
5 2
_ bt ct 15
X4——§’-+‘—'Z‘—+dt+16 (139)

where b = -0.02025, ¢ = 0.2025, d = -0.525. Fig. 3 shows x, for both cases.

10. Conclusions

We have considered the question of necessary conditions for optimality

of state-constrained control problems. Two approaches were used. In the

-I- Note that for certain initial conditions optimal trajectories will lie along
the constraint boundary; expression (89) suggests this.
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first, necessary conditions were obtained by limiting arguments based on
the well-known Kelley penalty technique. The second approach utilized
functional analysis and variational theory; the significant difference was
that, unlike [3] and [7] no a priori constraints were imposed to ensure
feasibility. Our necessary conditions yield a considerable simplification
in the junction conditions on the influence functions over those obtained by
previous researchers. We do not imply that the necessary conditions ob-
tained by previous workers are incorrect, but rather, that, inasmuch as
they overspecify the conditions at the junction, there exists the possibility
of non-stationary solutions satisfying these conditions as shown in Section 9.
Thus misleading results may be obtained using the existing necessary condi-
tions. Owur necessary conditions yield extremals.

p-

(

1 p-1
For the regular case, we have discovered that, if (u) A )+

u) , problems
with odd-ordered constraints do not have boundary arcs, (as opposed to
boundary points). We feel that this result has a two-fold significance; first,

it yields further insight into the structure of solutions of state constrained
problems, and second, it provides one more clue towards the connection
between state~constrained and singular problems, which has been speculated
upon elsewhere [25].

The comparatively simple form of the new necessary conditions should

stimulate research into new, efficient techniques for solving state constrained

optimal control problems.
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